Pueden Pensar las Máquinas? (Parte 1 de 2)
Hubo un tiempo en que tuvo que parecer sumamente improbable que las máquinas pudieran aprender a dar cuenta de sus necesidades mediante sonidos, aún yendo éstos dirigidos a oídos humanos. ¿No será lícito, entonces, concebir que pueda llegar el día en que ya no sean necesarios nuestros oídos, sino que la audición se produzca gracias a la delicada construcción de la máquina, el día en que su lenguaje haya trascendido del grito animal a un discurso tan intrincado como el nuestro?
Samuel Butler, Erewhon
Alan Mathison Turing, matemático inglés fallecido en 1954 cuando sólo contaba 42 años, ha sido, entre los pioneros de las ciencias del cómputo, uno de los más creativos. Se le conoce sobre todo por la idea de una máquina hipotética, llamada «máquina de Turing». Echaremos aquí una rápida ojeada a estas máquinas y nos detendremos luego en una de las ideas menos conocidas de Turing, el juego de Turing, que conduuce a profundas controversias de carácter filosófico, hoy todavía por resolver.
La máquina de Turing es un modelo computacional introducido por Alan Turing en el trabajo “On computable numbers, with an application to the Entscheidungsproblem”, publicado por la Sociedad Matemática de Londres, en el cual se estudiaba la cuestión planteada por David Hilbert sobre si las matemáticas son decidibles, es decir, si hay un método definido que pueda aplicarse a cualquier sentencia matemática y que nos diga si esa sentencia es cierta o no. Turing construyó un modelo formal de computador, la máquina de Turing, y demostró que existían problemas que una máquina no podía resolver. La máquina de Turing es un modelo matemático abstracto que formaliza el concepto de algoritmo. Una máquina de Turing con una sola cinta puede ser definida como una 6-tupla , donde Q es un conjunto finito de estados, Γ es un conjunto finito de símbolos de cinta, el alfabeto de cinta es: -el estado inicial -es un símbolo denominado blanco, y es el único símbolo que se puede repetir un número infinito de veces -es el conjunto de estados finales de aceptación
-es una función parcial denominada función de transición, donde L es un movimiento a la izquierda y R es el movimiento a la derecha.
En 1950, la revista inglesa Mind, dedicada a temas filosóficos, publicó un artículo de Turing, «Computing Machinery and Intelligence». Desde aquella fecha, el artículo ha sido recogido en diversas antologías, entre ellas, en The World of Mathematics de James R. Newman (hay traducción española: Sigma, el mundo de las matemáticas, Ed. Grijalbo). Allí, Turing empezaba diciendo: «Me propongo examinar la cuestión ¿Pueden pensar las máquinas?». Así planteada, decía Turing, la pregunta era demasiado vaga para poder darle alguna respuesta significativa. Turing proponía entonces otra cuestión mucho más restringida, relacionada con ésta: ¿Es posible enseñar a un ordenador a ganar el «juego de imitación», hoy comúnmente conocido por juego de Turing o test de Turing?
Turing inspiró su test en un juego de salón. Un hombre y una mujer se encierran en distintas habitaciones. Un interrogador, da igual hombre que mujer, va haciéndoles preguntas a los jugadores. Las preguntas son formuladas a través de un intermediario; el correveidile trae las respuestas, de vuelta, escritas a máquina. Cada jugador se propone convencer al preguntón de que él o ella es, en realidad, la mujer, pongamos por ejemplo. El interrogador gana el juego cuando atina quien está diciendo la verdad.
Supongamos, decía Turing, que uno de los jugadores sea sustituido por una máquina capaz de aprender, a la que hemos enseñado a conversar en un lenguaje natural. ¿Es posible que una máquina así logre engañar al inquiridor, si tanto la máquina como su compañero humano se esforzasen al máximo en convencer al interrogador de que él, ella o ello son verdaderamente humanos? El significado de «engañar» queda desdibujado por varias imprecisiones. ¿Cuánto tiempo puede durar el interrogatorio? ¿Cuán inteligente es el interrogador? ¿Cuán inteligente es la persona que compite con la máquina? Un ordenador moderno podría superar el test de Turing si el interrogador fuese un niño que tan sólo pudiera formular unas cuantas preguntas. Es verosímil que no se produzcan en este campo avances espectaculares, como probablemente tampoco se produjeron en la evolución del intelecto humano. Las máquinas conversadoras podrían ir mejorando gradualmente, resistiendo diálogos más y más largos frente a interrogadores cada vez más perspicaces. Quizá llegue un día en que tan sólo un potentísimo ordenador electrónico sea capaz de discriminar sistemática y acertadamente las personas de las máquinas. El propio Turing hizo una predicción cautelosa. Hacia el año 2000, escribió, los ordenadores tendrán la facilidad de palabra suficiente como para despistar a un «interrogador corriente» alrededor del 30 por 100 de las veces al cabo de «unos cinco minutos» de conversación. Turing imaginó un diálogo que pudiera ser típico:
Samuel Butler, Erewhon
Alan Mathison Turing, matemático inglés fallecido en 1954 cuando sólo contaba 42 años, ha sido, entre los pioneros de las ciencias del cómputo, uno de los más creativos. Se le conoce sobre todo por la idea de una máquina hipotética, llamada «máquina de Turing». Echaremos aquí una rápida ojeada a estas máquinas y nos detendremos luego en una de las ideas menos conocidas de Turing, el juego de Turing, que conduuce a profundas controversias de carácter filosófico, hoy todavía por resolver.
La máquina de Turing es un modelo computacional introducido por Alan Turing en el trabajo “On computable numbers, with an application to the Entscheidungsproblem”, publicado por la Sociedad Matemática de Londres, en el cual se estudiaba la cuestión planteada por David Hilbert sobre si las matemáticas son decidibles, es decir, si hay un método definido que pueda aplicarse a cualquier sentencia matemática y que nos diga si esa sentencia es cierta o no. Turing construyó un modelo formal de computador, la máquina de Turing, y demostró que existían problemas que una máquina no podía resolver. La máquina de Turing es un modelo matemático abstracto que formaliza el concepto de algoritmo. Una máquina de Turing con una sola cinta puede ser definida como una 6-tupla , donde Q es un conjunto finito de estados, Γ es un conjunto finito de símbolos de cinta, el alfabeto de cinta es: -el estado inicial -es un símbolo denominado blanco, y es el único símbolo que se puede repetir un número infinito de veces -es el conjunto de estados finales de aceptación
-es una función parcial denominada función de transición, donde L es un movimiento a la izquierda y R es el movimiento a la derecha.
Una máquina de Turing es una «caja negra» (una máquina cuyo mecanismo no se especifica) capaz de ir inspeccionando una cinta ilimitada dividida en casillas. La caja puede tomar un número finito cualquiera de estados. En la cinta hay una porción finita cuyas casillas no están en blanco; cada una de éstas porta un único símbolo tomado de entre una colección finita prefijada. Al inspeccionar una casilla, la caja puede dejar intacto el símbolo que contenga; puede borrarlo; puede borrarlo e imprimir en su lugar otro símbolo; o puede imprimir un símbolo en una casilla vacía. La cinta puede entonces desplazarse una casilla hacia la derecha o la izquierda, o permanecer quieta; por su parte, la caja puede persistir en su estado o saltar a un estado diferente.
La conducta de la máquina en cada una de las combinaciones de símbolo y estado queda determinada por una tabla de reglas. La tabla define totalmente la máquina de Turing concreta de que se trate. Existe una infinidad denumerable (es decir, de cardinal aleph-sub-cero) de posibles máquinas de Turing, cada una diseñada para una tarea específica; y la estructura de la máquina puede diferir mucho en sus símbolos, estados y reglas, según la tarea a ejecutar.
Un buen procedimiento para captar la esencia de las máquinas de Turing consiste en construir una, aunque sea trivial. En la cinta de papel vemos ocho casillas marcadas 1111 + 111, que denotan la suma de 4 más 3 en el sistema «unario», donde para expresar el entero n se escriben n palotes, n «unos», por ejemplo. Para construir la máquina recortaremos en cartulina un cuadrado no muy grande (la caja negra) y en él dos rendijas, por donde se hará deslizar la cinta como se muestra en la figura. Se ajusta la cinta de forma que sea visible el primer 1. La tabla de instrucciones que acompaña la ilustración enumera todas las intrucciones necesarias. Empecemos suponiendo que la máquina se encuentra en el estado A. Consultamos en la tabla la instrucción correspondiente al símbolo 1 y el estado A, y ejecutamos lo que dice: borrar el 1, desplazar la cinta un cuadro hacia la izquierda (para poder explorar la casilla adyacente a la derecha) y suponer que la máquina ha adoptado el estado B. Se prosigue de esta forma hasta que la tabla ordene detenernos. Siguiendo correctamente las instrucciones, la máquina borrará el primer 1, y va desplazando la cinta hacia la izquierda, casilla por casilla, hasta alcanzar el signo «más». Una vez alcanzado, cambiará el + por un 1, y se detendrá. El contenido de la cinta será entonces 1111111, es decir, 7. Como es evidente, las sencillas reglas anteriores dejan programado el dispositivo para sumar cualquier par de números enteros en notación unaria, por grandes que sean. No cabe duda de que como procedimiento de sumación este método es bien fastidioso; pero debemos recordar que el objetivo de Turing era reducir el cálculo mecánico a un esquema abstracto sencillo, que facilitara así el análisis de toda clase de espinosos problemas teóricos, como, por ejemplo, qué puede ser computado y qué no. Turing demostró que su dispositivo ideal puede ser programado para realizar, en su desmañado estilo, cualquier cosa que pueda ejecutar el más potente ordenador electrónico. Lo mismo que cualquier ordenador -y que el cerebro humano- la máquina de Turing está limitada por el hecho de que ciertos cálculos (como los necesarios para hallar el valor de «pi») exigen infinito número de pasos, y por otro lado, debido a que ciertos problemas son intrínsecamente insolubles, es decir, se sabe que no puede existir ningún algoritmo, ningún proceso perfectamente detallado, que permita resolverlos. Una «máquina universal de Turing» es capaz de llevar a cabo cualquier tarea que pueda efectuar una máquina de Turing especialmente concebida para esa tarea. En breve, la máquina universal es capaz de computar todo lo que sea computable.La conducta de la máquina en cada una de las combinaciones de símbolo y estado queda determinada por una tabla de reglas. La tabla define totalmente la máquina de Turing concreta de que se trate. Existe una infinidad denumerable (es decir, de cardinal aleph-sub-cero) de posibles máquinas de Turing, cada una diseñada para una tarea específica; y la estructura de la máquina puede diferir mucho en sus símbolos, estados y reglas, según la tarea a ejecutar.
En 1950, la revista inglesa Mind, dedicada a temas filosóficos, publicó un artículo de Turing, «Computing Machinery and Intelligence». Desde aquella fecha, el artículo ha sido recogido en diversas antologías, entre ellas, en The World of Mathematics de James R. Newman (hay traducción española: Sigma, el mundo de las matemáticas, Ed. Grijalbo). Allí, Turing empezaba diciendo: «Me propongo examinar la cuestión ¿Pueden pensar las máquinas?». Así planteada, decía Turing, la pregunta era demasiado vaga para poder darle alguna respuesta significativa. Turing proponía entonces otra cuestión mucho más restringida, relacionada con ésta: ¿Es posible enseñar a un ordenador a ganar el «juego de imitación», hoy comúnmente conocido por juego de Turing o test de Turing?
Turing inspiró su test en un juego de salón. Un hombre y una mujer se encierran en distintas habitaciones. Un interrogador, da igual hombre que mujer, va haciéndoles preguntas a los jugadores. Las preguntas son formuladas a través de un intermediario; el correveidile trae las respuestas, de vuelta, escritas a máquina. Cada jugador se propone convencer al preguntón de que él o ella es, en realidad, la mujer, pongamos por ejemplo. El interrogador gana el juego cuando atina quien está diciendo la verdad.
Supongamos, decía Turing, que uno de los jugadores sea sustituido por una máquina capaz de aprender, a la que hemos enseñado a conversar en un lenguaje natural. ¿Es posible que una máquina así logre engañar al inquiridor, si tanto la máquina como su compañero humano se esforzasen al máximo en convencer al interrogador de que él, ella o ello son verdaderamente humanos? El significado de «engañar» queda desdibujado por varias imprecisiones. ¿Cuánto tiempo puede durar el interrogatorio? ¿Cuán inteligente es el interrogador? ¿Cuán inteligente es la persona que compite con la máquina? Un ordenador moderno podría superar el test de Turing si el interrogador fuese un niño que tan sólo pudiera formular unas cuantas preguntas. Es verosímil que no se produzcan en este campo avances espectaculares, como probablemente tampoco se produjeron en la evolución del intelecto humano. Las máquinas conversadoras podrían ir mejorando gradualmente, resistiendo diálogos más y más largos frente a interrogadores cada vez más perspicaces. Quizá llegue un día en que tan sólo un potentísimo ordenador electrónico sea capaz de discriminar sistemática y acertadamente las personas de las máquinas. El propio Turing hizo una predicción cautelosa. Hacia el año 2000, escribió, los ordenadores tendrán la facilidad de palabra suficiente como para despistar a un «interrogador corriente» alrededor del 30 por 100 de las veces al cabo de «unos cinco minutos» de conversación. Turing imaginó un diálogo que pudiera ser típico:
P. Vamos a ver, componga un soneto dedicado a sus padres.
R. No cuente conmigo para eso. Nunca he sabido escribir poesía ..
P. Sume 34957 y 70764.
R. (Pausa de unos 30 segundos antes de contestar). 105.621.
P. ¿Sabe jugar al ajedrez?
R. Sí.
P. Tengo mi rey en 1R. No tengo más piezas. Usted tiene su rey en 6R, una torre en 1T, y nada más. Juega usted. ¿Qué debe hacer?
R. (Tras pausa de unos 15 segundos). T8T. Mate.
R. No cuente conmigo para eso. Nunca he sabido escribir poesía ..
P. Sume 34957 y 70764.
R. (Pausa de unos 30 segundos antes de contestar). 105.621.
P. ¿Sabe jugar al ajedrez?
R. Sí.
P. Tengo mi rey en 1R. No tengo más piezas. Usted tiene su rey en 6R, una torre en 1T, y nada más. Juega usted. ¿Qué debe hacer?
R. (Tras pausa de unos 15 segundos). T8T. Mate.
Existen ya muchos programas que permiten que un ordenador simule conversaciones en lenguaje natural. Joseph Weizenbaum, ingeniero eléctrico del M.I.T., ha preparado uno que él ha bautizado «Eliza» en recuerdo de la Eliza Doolittle del Pygmalion de Shaw. El New York Times (15 de junio de 1968) reseñaba el siguiente diálogo mecanográfico entre una joven y un ordenador I.B.M. 7094, que suplantaba a un hipotético psicoanalista:
Mujer: Todos los hombres son iguales.
Ordenador: ¿En qué aspecto?
M. En que siempre están dándonos la lata con una cosa u otra.
O. ¿Puede darme algún ejemplo concreto?
M. Bueno, para que vea, mi novio me ha hecho venir aquí.
O. ¿Su novio la ha hecho venir aquí?
M. Sí. Dice que estoy siempre deprimida.
O. Lamento mucho que esté usted deprimida.
M. Pero es cierto. No soy feliz.
O. ¿Cree usted que venir aquí le servirá de ayuda?
M. Bueno, lo que está claro es que necesito que me ayuden.
O. ¿De qué cree usted que le serviría que le ayudasen?
M. Quizás... para llevarme mejor con mi madre.
O. Hábleme de su familia.
M. Mi madre se ocupa mucho de mí.
O. ¿Hay alguien más en su familia que se ocupe de usted?
M. También mi padre.
O. ¿Su padre?
M. Hay cosas en las que usted se parece a mi padre.
O. ¿Qué parecido me encuentra usted?
M. Usted no es nada agresivo, pero tengo la impresión de que no quiere que yo me dé cuenta.
O. ¿Por qué piensa usted que no soy agresivo?
M. Porque nunca me rebate lo que digo.
El diálogo prosigue en la misma tónica y no difiere gran cosa de la conversión entre un paciente y un terapeuta no directivo. El programa no era tan siquiera un programa «autodidacta». Weizenbaum admitió de buena gana que el ordenador no «comprendía» nada de lo que allí se decía. Desde luego, no podría superar el test de Turing. Supongamos, empero, que hacia el año 2020 haya ordenadores capaces de afrontar el juego de Turing con tanto éxito como ahora son capaces de jugar a las damas o al ajedrez. ¿Qué revelaría eso -si es que revela algo- acerca de la naturaleza de la «mente» de la máquina?
Ordenador: ¿En qué aspecto?
M. En que siempre están dándonos la lata con una cosa u otra.
O. ¿Puede darme algún ejemplo concreto?
M. Bueno, para que vea, mi novio me ha hecho venir aquí.
O. ¿Su novio la ha hecho venir aquí?
M. Sí. Dice que estoy siempre deprimida.
O. Lamento mucho que esté usted deprimida.
M. Pero es cierto. No soy feliz.
O. ¿Cree usted que venir aquí le servirá de ayuda?
M. Bueno, lo que está claro es que necesito que me ayuden.
O. ¿De qué cree usted que le serviría que le ayudasen?
M. Quizás... para llevarme mejor con mi madre.
O. Hábleme de su familia.
M. Mi madre se ocupa mucho de mí.
O. ¿Hay alguien más en su familia que se ocupe de usted?
M. También mi padre.
O. ¿Su padre?
M. Hay cosas en las que usted se parece a mi padre.
O. ¿Qué parecido me encuentra usted?
M. Usted no es nada agresivo, pero tengo la impresión de que no quiere que yo me dé cuenta.
O. ¿Por qué piensa usted que no soy agresivo?
M. Porque nunca me rebate lo que digo.
El diálogo prosigue en la misma tónica y no difiere gran cosa de la conversión entre un paciente y un terapeuta no directivo. El programa no era tan siquiera un programa «autodidacta». Weizenbaum admitió de buena gana que el ordenador no «comprendía» nada de lo que allí se decía. Desde luego, no podría superar el test de Turing. Supongamos, empero, que hacia el año 2020 haya ordenadores capaces de afrontar el juego de Turing con tanto éxito como ahora son capaces de jugar a las damas o al ajedrez. ¿Qué revelaría eso -si es que revela algo- acerca de la naturaleza de la «mente» de la máquina?
¿Puede un sistema pensarse a sí mismo?
Continuará...
Comentarios
Publicar un comentario
Deje aquí su comentario